Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 743
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672484

RESUMO

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Assuntos
Glucose , Síndrome Metabólica , Componentes Aéreos da Planta , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Componentes Aéreos da Planta/química , Humanos , Glucose/metabolismo , Glycyrrhiza/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética
2.
Sci Rep ; 14(1): 9888, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688953

RESUMO

Fatty acids have been shown to modulate glucose metabolism in vitro and in vivo. However, there is still a need for substantial evidence and mechanistic understanding in many cell types whether both saturated and unsaturated fatty acids (SFAs and UFAs) pose a similar effect and, if not, what determines the net effect of fatty acid mixes on glucose metabolism. In the present study, we asked these questions by treating granulosa cells (GCs) with the most abundant non-esterified fatty acid species in bovine follicular fluid. Results revealed that oleic and alpha-linolenic acids (UFAs) significantly increased glucose consumption compared to palmitic and stearic acids (SFAs). A significant increase in lactate production, extracellular acidification rate, and decreased mitochondrial activity indicate glucose channeling through aerobic glycolysis in UFA treated GCs. We show that insulin independent glucose transporter GLUT10 is essential for UFA driven glucose consumption, and the induction of AKT and ERK signaling pathways necessary for GLUT10 expression. To mimic the physiological conditions, we co-treated GCs with mixes of SFAs and UFAs. Interestingly, co-treatments abolished the UFA induced glucose uptake and metabolism by inhibiting AKT and ERK phosphorylation and GLUT10 expression. These data suggest that the net effect of fatty acid induced glucose uptake in GCs is determined by SFAs under physiological conditions.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Glicólise , Células da Granulosa , Animais , Bovinos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Feminino , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Insaturados/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Ácidos Graxos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Cultivadas
3.
Parasitol Res ; 123(3): 161, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491300

RESUMO

Opisthorchis viverrini infection and the subsequent bile duct cancer it induces remains a significant public health problem in Southeast Asia. Opisthorchiasis has been reported to cause reduced plasma glucose levels among infected patients. The underlying mechanism for this phenomenon is unclear. In the present study, evidence is presented to support the hypothesis that O. viverrini exploits host cholangiocyte glucose transporters (GLUTs) in a similar manner to that of rodent intestinal nematodes, to feed on unabsorbed glucose in the bile for survival. GLUT levels in a cholangiocyte H69 cell line co-cultured with excretory-secretory products of O. viverrini were examined using qPCR and immunoblotting. GLUT 8 mRNA and expressed proteins were found to be downregulated in H69 cells in the presence of O. viverrini. This suggests that O. viverrini alters glucose metabolism in cells within its vicinity by limiting transporter expression resulting in increased bile glucose that it can utilize and potentially explains the previously reported anti-insulin effect of opisthorchiasis.


Assuntos
Antígenos de Helmintos , Neoplasias dos Ductos Biliares , Opistorquíase , Opisthorchis , Animais , Humanos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos , Glucose/metabolismo , Opistorquíase/complicações , Opistorquíase/metabolismo , Opisthorchis/metabolismo , Antígenos de Helmintos/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo
4.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482820

RESUMO

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Tioglicolatos , Triazóis , Humanos , Ácido Úrico/uso terapêutico , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Uricosúricos/uso terapêutico , Pirimidinas/toxicidade , Pirimidinas/uso terapêutico , Proteínas Facilitadoras de Transporte de Glucose , Proteínas de Transporte de Cátions Orgânicos
5.
Biochimie ; 220: 107-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184121

RESUMO

Altered aerobic glycolysis is the robust mechanism to support cancer cell survival and proliferation beyond the maintenance of cellular energy metabolism. Several investigators portrayed the important role of deregulated glycolysis in different cancers, including breast cancer. Breast cancer is the most ubiquitous form of cancer and the primary cause of cancer death in women worldwide. Breast cancer with increased glycolytic flux is hampered to eradicate with current therapies and can result in tumor recurrence. In spite of the low order efficiency of ATP production, cancer cells are highly addicted to glycolysis. The glycolytic dependency of cancer cells provides potential therapeutic strategies to preferentially kill cancer cells by inhibiting glycolysis using antiglycolytic agents. The present review emphasizes the most recent research on the implication of glycolytic enzymes, including glucose transporters (GLUTs), hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), lactate dehydrogenase-A (LDHA), associated signalling pathways and transcription factors, as well as the antiglycolytic agents that target key glycolytic enzymes in breast cancer. The potential activity of glycolytic inhibitors impinges cancer prevalence and cellular resistance to conventional drugs even under worse physiological conditions such as hypoxia. As a single agent or in combination with other chemotherapeutic drugs, it provides the feasibility of new therapeutic modalities against a wide spectrum of human cancers.


Assuntos
Neoplasias da Mama , Glicólise , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Glicólise/efeitos dos fármacos , Efeito Warburg em Oncologia/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Hexoquinase/metabolismo , Hexoquinase/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo
6.
Pathol Res Pract ; 253: 154966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043192

RESUMO

BACKGROUND: Pancreatic neuroendocrine tumors (PanNETs) are rare neoplasms. Additionally, glucose transporter 2 (GLUT2) is associated with insulin production and is essential for glucose transport to normal pancreatic ß-cells. Neoplastic cell GLUT2 expression may also influence insulin production by using this transporter. GLUT2 expression and its clinical significance remain unclear in PanNETs. This study aimed to provide GLUT2 expression profiles and evidence of correlation with insulin in PanNETs. METHODS: Clinical data were retrieved from 113 surgically resected paraffin-embedded PanNET tissue samples fixed with 10% formalin. PanNETs are categorized as insulinoma, non-functional (NF)-PanNET, or PanNET-not otherwise specified (NOS). A GLUT2 score was used to evaluate cytoplasmic GLUT2 immunoreactivity. The immunoreactive score (IRS) was used to determine membranous GLUT2, cytoplasmic insulin, and proinsulin immunoreactivities. A commercially available in situ hybridization (ISH) kit detected human SLC2A2 (GLUT2) mRNA on tissues in all seven positive- and 20 negative-GLUT2 IRS cases. RESULTS: GLUT2 and IRSs significantly differed among insulinoma, NF-PanNET, and PanNET-NOS. Insulinomas exhibited significantly higher GLUT2 scores and IRSs than did NF-PanNETs. GLUT2 IRS positive cases demonstrated significantly higher insulin and proinsulin IRSs than did negative cases. Additionally, GLUT2 ISH-positive cases demonstrated positive GLUT2 scores and IRSs, with significantly higher GLUT2 IRSs than did negative cases. PanNET histological grade categories did not significantly affect GLUT2 scores and IRSs. CONCLUSION: The first evidence of a correlation between GLUT2 expressions and insulin in PanNETs is shown in this study.


Assuntos
Insulinoma , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Insulina , Tumores Neuroendócrinos/patologia , Proinsulina/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Facilitadoras de Transporte de Glucose/genética
7.
Biochimie ; 219: 55-62, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37967737

RESUMO

Glucose transporters (GLUTs) are crucial in maintaining glucose homeostasis and supporting energy production in various tissues, including the testes. This review article delves into the distribution and function of GLUTs in distinct testicular cell types, namely Leydig cells, Sertoli cells, germ cells, and spermatozoa, shedding light on their significance in the context of male reproductive health-an issue of mounting global concern. Furthermore, this article examines the implications of GLUT dysregulation in testicular dysfunction. Altered GLUT expression has been associated with impaired steroidogenesis, spermatogenesis, sperm count, and motility in various animal models. Lastly, the article underscores the potential therapeutic implications of targeting GLUTs concerning testicular toxicity. Insights gleaned from studies in diabetes and cancer suggest that modulating GLUT expression and translocation could present novel strategies for mitigating testicular dysfunction and safeguarding male fertility. In summary, the intricate interplay between GLUTs, glucose metabolism, and testicular health underscores the significance of sustaining testicular glucose homeostasis for male reproductive health. Manipulating GLUTs presents an innovative avenue to address testicular dysfunction, potentially revolutionizing therapeutic strategies to restore male fertility and overall reproductive well-being. Future research in this field holds great promise for advancing male fertility treatments and reproductive health interventions.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Testículo , Animais , Masculino , Testículo/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Glucose/metabolismo
8.
Am J Physiol Renal Physiol ; 326(2): F227-F240, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031729

RESUMO

Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.


Assuntos
Ácidos Aristolóquicos , Nefropatia dos Bálcãs , Compostos Benzidrílicos , Glucosídeos , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Masculino , Feminino , Camundongos , Animais , Nefropatia dos Bálcãs/metabolismo , Nefropatia dos Bálcãs/patologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Modelos Animais de Doenças , Creatinina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Ácidos Aristolóquicos/toxicidade , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Fibrose , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Sódio/metabolismo
9.
Mol Diagn Ther ; 28(1): 87-99, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971623

RESUMO

BACKGROUND: Renal hypouricemia (RHUC), a rare inherited disorder characterized by impaired uric acid reabsorption and subsequent profound hypouricemia, occurs mainly due to variants in SLC22A12 or SLC2A9. Only anecdotal cases and one small-scale RHUC screening study have been reported in the Chinese population. METHODS: A total of 19 patients with RHUC from 17 unrelated families were recruited from our center. The medical history, clinical manifestations, biochemical exam, and clinical outcomes were collected. Next-generation sequencing-based targeted gene sequencing or whole exon sequencing was performed. RESULTS: A total of 22 variants in SLC22A12 or SLC2A9 were found in 19 patients. The variant c.944G>A (p.W315X) in SLC2A9 was identified in three patients. Three variants c.165C>A (p.D55E), c.1549_1555delGAGACCC (p.E517Rfs*17), and c.1483T>C (p.W495R) in SLC22A12 and three variants c.1215+1G>A (splicing variant), c.643A>C (p.T215P), and c.227C>A (p.S76X) in SLC2A9 were novel. A proportion of 10 out of 19 patients presented with exercise-induced acute kidney injury (EIAKI). The renal outcome was favorable. Five patients had nephrolithiasis, in whom three had hypercalciuria. CONCLUSION: The current study reported six novel variants in SLC22A12 and SLC2A9 genes of Chinese patients with RHUC. The variant c.944G>A (p.W315X) in SLC2A9 may be common in Chinese patients. EIAKI is the main clinical phenotype associated with RHUC in our cohort, with a favorable outcome. Hypercalciuria presented in some RHUC patients is a new finding.


Assuntos
Injúria Renal Aguda , Transportadores de Ânions Orgânicos , Erros Inatos do Transporte Tubular Renal , Cálculos Urinários , Humanos , Hipercalciúria , Proteínas Facilitadoras de Transporte de Glucose/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Genótipo , Fenótipo , China
10.
J Nat Prod ; 87(1): 2-13, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117981

RESUMO

The glucose transporter 1 (GLUT1) protein is involved in the basal-level absorption of glucose in tumor cells. Inhibiting GLUT1 decreases tumor cell proliferation and induces tumor cell damage. Natural GLUT1 inhibitors have been studied only to a small extent, and the structures of known natural GLUT1 inhibitors are limited to a few classes of natural products. Therefore, discovering and researching other natural GLUT1 inhibitors with novel scaffolds are essential. Physalis angulata L. var. villosa is a plant known as Mao-Ku-Zhi (MKZ). Withanolides are the main phytochemical components of MKZ. MKZ extracts and the components of MKZ exhibited antitumor activity in recent pharmacological studies. However, the antitumor-active components of MKZ and their molecular mechanisms remain unknown. A cell membrane-biomimetic nanoplatform (CM@Fe3O4/MIL-101) was used for target separation of potential GLUT1 inhibitors from MKZ. A new withanolide, physagulide Y (2), together with six known withanolides (1, 3-7), was identified as a potential GLUT1 inhibitor. Physagulide Y was the most potent GLUT1 inhibitor, and its antitumor activity and possible mechanism of action were explored in MCF-7 human cancer cells. These findings advance the development of technologies for the targeted separation of natural products and identify a new molecular framework for the investigation of natural GLUT1 inhibitors.


Assuntos
Antineoplásicos Fitogênicos , Physalis , Vitanolídeos , Humanos , Physalis/química , Transportador de Glucose Tipo 1 , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Proteínas Facilitadoras de Transporte de Glucose , Extratos Vegetais/química , Vitanolídeos/farmacologia , Vitanolídeos/química , Proteínas de Membrana Transportadoras , Estrutura Molecular
11.
PLoS One ; 18(12): e0295038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060535

RESUMO

Gout-a very painful inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints-is influenced by several factors. We identified the association of single- nucleotide polymorphisms (SNPs) that link gout with health-related lifestyle factors using genomic data from the Korean Genome and Epidemiology Study. We conducted a genome-wide association study (GWAS) on 18,927 samples of 438 Korean patients with gout and 18,489 controls for the discovery stage. For the replication stage, another batch containing samples of 326 patients with gout and 2,737 controls were analyzed. Lastly, a meta-analysis was performed using these two cohorts. We analyzed the effects of health-related lifestyle factors, including eating habits, physical activity, drinking behavior, and smoking behavior, on gout. After identifying the association between GWAS-derived SNPs and health-related lifestyle factors, we confirmed the interaction between the polygenic risk score (PRS) and health-related lifestyle factors. We identified 15 SNPs related to gout, among which rs1481012 of ABCG2 located on chromosome 4 has been newly discovered (P = 2.46e-11). On examining the interaction between SNPs and health-related lifestyles, rs3109823-located in ABCG2-was found to be associated with smoking status. In addition, rs11936395-located in SLC2A9-was significantly associated with the average momentum of exercise per session, whereas rs11066325 located in PTPN11, showed a significant association with the number of exercise sessions per week, smoking status, drinking status, and amount of soju drink per session. rs9421589-located in FAM35A-was significantly associated with the duration of smoking. In addition, we verified that the association between PRS and duration of smoking affects gout. Thus, in this study, we identified novel SNPs that link gout with health-related lifestyle factors in the Korean population.


Assuntos
Gota , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla , Ácido Úrico , Gota/epidemiologia , Gota/genética , Estilo de Vida , República da Coreia/epidemiologia , Predisposição Genética para Doença , Fatores de Risco , Proteínas Facilitadoras de Transporte de Glucose/genética
12.
BMC Nephrol ; 24(1): 384, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129773

RESUMO

BACKGROUND: Hereditary renal hypouricemia (RHUC) is a heterogenous disorder characterized by defective uric acid (UA) reabsorption resulting in hypouricemia and increased fractional excretion of UA. RHUC is an important cause of exercise-induced acute kidney injury (EIAKI), nephrolithiasis and posterior reversible encephalopathy syndrome (PRES). We present here an unusual case of a patient with RHUC who presented with recurrent EIAKI and had two heterozygous mutations in the SLC2A9 gene. CASE PRESENTATION: A 43-year old man was admitted to our clinic because of bilateral loin pain, nausea and sleeplessness for 3 days after strenuous exercise. The laboratory results revealed increased levels of blood urea nitrogen (BUN) (15 mmol/l) and serum creatinine (Scr) (450 µmol/l), while the UA level was extremely low at 0.54 mg/dl, and his fractional excretion of urate (FE-UA) was 108%. The patient had an episode of acute kidney injury after playing soccer approximately 20 years ago, and on routine physical examination, his UA was less than 0.50 mg/dl. In view of the marked hypouricemia and high FE-UA, a diagnosis of RHUC was suspected, which led us to perform mutational screening of the SLC22A12 and SLC2A9 genes. DNA sequencing revealed no mutation in SLC22A12 gene, but two heterozygous mutations in the SLC2A9 gene. CONCLUSIONS: This is a rare report of a patient with RHUC2 due to the mutation of SLC2A9. And this unique symptom of EIAKI and decreased or normal serum concentrations of UA warrant more attention as an early cue of RHUC.


Assuntos
Injúria Renal Aguda , Transportadores de Ânions Orgânicos , Síndrome da Leucoencefalopatia Posterior , Masculino , Humanos , Adulto , Síndrome da Leucoencefalopatia Posterior/complicações , Síndrome da Leucoencefalopatia Posterior/diagnóstico , Síndrome da Leucoencefalopatia Posterior/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/complicações , Heterozigoto , Mutação , Ácido Úrico , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética
13.
Exp Cell Res ; 433(2): 113851, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37940066

RESUMO

BACKGROUND: Ovarian cancer has been a worldwide health burden for women and its progression is highly hypoxia-independent. Here, we investigated the exact mechanisms by which hypoxia contributes to the malignant progression of ovarian cancer. METHOD: MTT, transwell, colony formation, and scratch wound healing assays were carried out for cellular functions. The underlying mechanism by which hypoxia functions was explored by RNA-seq, enrichment analysis, western blotting, qRT-PCR, flow cytometry, ChIP, luciferase reporter, and ELISA. Finally, animal experiments including the xenograft model and tumor metastasis model were constructed to validate the role of SLC2A12 in vivo. RESULTS: Hypoxia treatment promoted the cell proliferation, mobility, and colony growth abilities of the two ovarian cancer cell lines HO-8910 and A2780. RNA-seq and enrichment analysis showed that SLC2A12 was hyper-expressed under hypoxia condition and it may be related to glutathione and lipid metabolism. Besides, the expression of SLC2A12 was negatively correlated with overall survival. Hypoxia suppressed ferroptosis by SLC2A12 because silencing SLC2A12 declined the cell viability of HO-8910 and A2780 cells under hypoxia conditions, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) breached that result and upregulated the expression of glutathione peroxidase 4 (GPX4). Moreover, hypoxia increased the expression of hypoxia inducible factor 1 A (HIF-1A), and the accumulated HIF-1A binds to hypoxia inducible factor 1 B (HIF1B) to form HIF-1 complex, then promoted the binding of hypoxic response elements (HRE) to SLC2A12 promoter by HIF-1/HRE signal. Subsequently, SLC2A12 regulated glutathione metabolism and in turn inhibited ferroptosis. The animal experiments indicated that silencing SLC2A12 could significantly inhibit tumor growth and metastasis in vivo. CONCLUSION: Hypoxia promoted ovarian cancer progression by upregulating SLC2A12 and then regulating glutathione metabolism to inhibit ferroptosis.


Assuntos
Ferroptose , Proteínas Facilitadoras de Transporte de Glucose , Neoplasias Ovarianas , Animais , Feminino , Humanos , Linhagem Celular Tumoral , Ferroptose/genética , Glutationa , Hipóxia , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Ovarianas/patologia , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo
14.
Asian Pac J Cancer Prev ; 24(11): 3917-3924, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019251

RESUMO

OBJECTIVE: Fructose and glucose are types of sugars commonly found in the diet that have been linked to cancer development. Glucose transporters (GLUTs) are facilitating the uptake of these hexoses. Expression of GLUT5 is higher in cancer cells than in healthy tissue. GLUT7 and GLUT11 facilitate the transport of glucose and fructose; however, their expression in breast cancer has not been extensively studied. The Bcl-2 family has been known as a regulator of the cell's survival and death. Here, we investigated the effect of the fructose-glucose combination in MCF-7 breast cancer cells on the viability, migration, and expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax ratio. METHODS: Breast cancer cells MCF-7 were treated with fructose, glucose, and combinations of fructose:glucose (75%:25%, 50%:50%, 25%:75%). Cell viability was assessed using an MTT test. Cell migration was examined with a wound-healing assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax. RESULTS: The viability and migration of MCF-7 breast cancer cells elevated when treated with a combination of fructose and glucose, and glucose alone, compared to fructose alone. The expression levels of GLUT5 and GLUT7 were highest in combination of fructose:glucose (75%:25%). Conversely, the expression of GLUT11 was consistently low across all treated media. The highest Bcl-2/Bax ratio was shown in fructose:glucose combination (25%:75%). CONCLUSION: The viability, migration, and Bcl-2/Bax ratio are enhanced in the combination media with higher glucose. In contrast, when the fructose composition was higher in the media, expression of GLUT5 and GLUT7 increased.


Assuntos
Neoplasias da Mama , Frutose , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Feminino , Humanos , Proteína X Associada a bcl-2/genética , Neoplasias da Mama/tratamento farmacológico , Frutose/farmacologia , Glucose/farmacologia , Células MCF-7 , Proteínas Facilitadoras de Transporte de Glucose/genética
15.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003267

RESUMO

The aim of this study was to investigate the process of attachment of saccharide particles differing in degree of complexity to cell receptors responsible for transport of glucose across the cell membrane (GLUT proteins). This phenomenon is currently considered when designing modern medicines, e.g., peptide drugs to which glucose residues are attached, enabling drugs to cross the barrier of cell membranes and act inside cells. This study aims to help us understand the process of assimilation of polysaccharide nanoparticles by tumour cells. In this study, the interactions between simple saccharides (glucose and sucrose) and dextran nanoparticles with two species of GLUT proteins (GLUT1 and GLUT4) were measured using the surface plasmon resonance technique. We managed to observe the interactions of glucose and sucrose with both applied proteins. The lowest concentration that resulted in the detection of interaction was 4 mM of glucose on GLUT1. Nanoparticles were measured using the same proteins with a detection limit of 40 mM. These results indicate that polysaccharide nanoparticles interact with GLUT proteins. The measured strengths of interactions differ between proteins; thus, this study can suggest which protein is preferable when considering it as a mean of nanoparticle carrier transport.


Assuntos
Glucose , Ressonância de Plasmônio de Superfície , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Carboidratos , Proteínas Facilitadoras de Transporte de Glucose , Sacarose , Transportador de Glucose Tipo 4
16.
BMC Complement Med Ther ; 23(1): 358, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37817130

RESUMO

BACKGROUND: Lipopolysaccharide (LPS)-induced dysfunction of pancreatic ß-cells leads to impaired insulin (INS) secretion. Astragalus polysaccharide (APS) is a bioactive heteropolysaccharide extracted from Astragalus membranaceus and is a popular Chinese herbal medicine. This study aimed to elucidate the mechanisms by which APS affects INS secretion from ß-cells under LPS stress. METHODS: Rat insulinoma (INS-1) cells were treated with LPS at a low, medium, or high concentration of APS. Glucose-stimulated insulin secretion (GSIS) was evaluated using an enzyme-linked immunosorbent assay (ELISA). Transcriptome sequencing was used to assess genome-wide gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to determine the signaling pathways affected by APS. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression of glucose transporter 2 (GLUT2), glucokinase (GCK), pancreatic duodenal homeobox-1 (PDX-1), and INS. Western blot analysis was used to detect the protein expression of phosphorylated protein kinase B (p-Akt), total Akt (t-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), total mTOR (t-mTOR), and GLUT2. RESULTS: LPS decreased GLUT2, GCK, PDX-1, and INS expression and reduced GSIS. These LPS-induced decreases in gene expression and GSIS were restored by APS treatment. In addition, transcriptome sequencing in combination with KEGG enrichment analysis revealed changes in the INS signaling pathway following APS treatment. LPS decreased p-Akt and p-mTOR expression, which was restored by APS treatment. The restorative effects of APS on GSIS as well as on the expression of GLUT2, GCK, PDX-1, and INS were abolished by treatment with the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin (RPM). CONCLUSIONS: APS restored GSIS in LPS-stimulated pancreatic ß-cells by activating the Akt/mTOR/GLUT2 signaling pathway.


Assuntos
Lipopolissacarídeos , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Secreção de Insulina , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo , Glucose/metabolismo , Polissacarídeos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Mamíferos/metabolismo
17.
Genes (Basel) ; 14(9)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761963

RESUMO

Renal hypouricemia (RHUC) is a rare hereditary disorder caused by loss-of-function mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, encoding urate transporters URAT1 and GLUT9, respectively, that reabsorb urate in the renal proximal tubule. The characteristics of this disorder are low serum urate levels, high renal fractional excretion of urate, and occasional severe complications such as nephrolithiasis and exercise-induced acute renal failure. In this study, we report two Spanish (Caucasian) siblings and a Pakistani boy with clinical characteristics compatible with RHUC. Whole-exome sequencing (WES) analysis identified two homozygous variants: a novel pathogenic SLC22A12 variant, c.1523G>A; p.(S508N), in the two Caucasian siblings and a previously reported SLC2A9 variant, c.646G>A; p.(G216R), in the Pakistani boy. Our findings suggest that these two mutations cause RHUC through loss of urate reabsorption and extend the SLC22A12 mutation spectrum. In addition, this work further emphasizes the importance of WES analysis in clinical settings.


Assuntos
Transportadores de Ânions Orgânicos , Erros Inatos do Transporte Tubular Renal , Masculino , Humanos , Sequenciamento do Exoma , Ácido Úrico , Erros Inatos do Transporte Tubular Renal/genética , Biologia Computacional , Doenças Raras , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
18.
Thorac Cancer ; 14(27): 2761-2769, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549925

RESUMO

BACKGROUND: Glucose transporters (GLUTs) are highly expressed in various cancers. However, the implications of these variable expression patterns are unclear. This study aimed to clarify the correlation between class I GLUT expression patterns and clinical outcomes in non-small cell lung cancer (NSCLC), including their potential role in inflammatory signaling. METHODS: Biopsy tissues from 132 patients with NSCLC (92 adenocarcinomas [ADC] and 40 squamous cell carcinomas [SQCC]) were analyzed. mRNA expression levels of class I GLUTs (solute carrier 2A [SLC2A]1, SLC2A2, SLC2A3, and SLC2A4) and inflammation-related molecules (toll-like receptors TLR4, RelA/p65, and interleukins IL8 and IL6) were measured. Cellular localization of GLUT3 and GLUT4 was investigated using immunofluorescence. RESULTS: Single, combined, and negative GLUT (SLC2A) expression were observed in 27/92 (29.3%), 27/92 (29.3%), and 38/92 (41.3%, p < 0.001) of ADC and 8/40 (20.0%), 29/40 (72.5%, p < 0.001), and 3/40 (7.5%) of SQCC, respectively. In ADC, the single SLC2A3-expressed group had a significantly poorer prognosis, whereas the single SLC2A4-expressed group had a significantly better prognosis. The combined expression groups showed no significant difference. SLC2A expression was not correlated with SQCC prognosis. SLC2A4 expression correlated with lower IL8 expression. GLUT3 and GLUT4 expressions were localized in the tumor cytoplasm. CONCLUSIONS: In lung ADC, single SLC2A3 expression correlated with poor prognosis, whereas single SLC2A4 expression correlated with better prognosis and lower IL8 expression. GLUT3 expression, which is increased by IL8 overexpression, may be suppressed by increasing the expression of GLUT4 through decreased IL8 expression.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/genética , Interleucina-8/genética , Interleucina-8/metabolismo , Neoplasias Pulmonares/genética
19.
Elife ; 122023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405846

RESUMO

Sugar porters (SPs) represent the largest group of secondary-active transporters. Some members, such as the glucose transporters (GLUTs), are well known for their role in maintaining blood glucose homeostasis in mammals, with their expression upregulated in many types of cancers. Because only a few sugar porter structures have been determined, mechanistic models have been constructed by piecing together structural states of distantly related proteins. Current GLUT transport models are predominantly descriptive and oversimplified. Here, we have combined coevolution analysis and comparative modeling, to predict structures of the entire sugar porter superfamily in each state of the transport cycle. We have analyzed the state-specific contacts inferred from coevolving residue pairs and shown how this information can be used to rapidly generate free-energy landscapes consistent with experimental estimates, as illustrated here for the mammalian fructose transporter GLUT5. By comparing many different sugar porter models and scrutinizing their sequence, we have been able to define the molecular determinants of the transport cycle, which are conserved throughout the sugar porter superfamily. We have also been able to highlight differences leading to the emergence of proton-coupling, validating, and extending the previously proposed latch mechanism. Our computational approach is transferable to any transporter, and to other protein families in general.


Assuntos
Glucose , Açúcares , Animais , Açúcares/metabolismo , Glucose/metabolismo , Transporte Biológico , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mamíferos/metabolismo
20.
Hum Exp Toxicol ; 42: 9603271231183056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37295442

RESUMO

Cadmium (Cd) is a toxic heavy metal, exposure to which leads to adverse health effects including chronic kidney damage. Tremendous efforts have been explored in identifying safe chelating agents for removing accumulated Cd from kidney, but with limited success owing to their associated side effects and the ineffectiveness in eliminating Cd. A newly developed chelating agent, sodium (S)-2-(dithiocarboxylato((2S,3 R,4R,5 R)-2,3,4,5,6-pentahydroxyhexyl) amino)-4(methylthio)butanoate (GMDTC), has been shown to effectively mobilize Cd from kidney. However, the mechanism(s) of removal are unclear, while it has been hypothesized that renal glucose transporters potentially play key roles mainly because GMDTC contains an open chain glucose moiety. To test this hypothesis, we utilized the CRISPR/Cas9 technology and human kidney tubule HK-2 cells, and constructed sodium-dependent glucose transporter 2 (SGLT2) or glucose transporter 2 (GLUT2) gene knockout cell lines. Our data showed that GMDTC's ability in removing Cd from HK-2 cells was significantly reduced both in GLUT2-/- or SGLT2-/- cells, with a removal ratio reduced from 28.28% in the parental HK-2 cells to 7.37% in GLUT2-/- cells and 14.6% in SGLT2-/- cells. Similarly, knocking out the GLUT2 or SGLT2 led to a compromised protective effect of GMDTC in reducing cytotoxicity of HK-2 cells. This observation was further observed in animal studies, in which the inhibition of GLUT2 transporter by phloretin treatment resulted in reduced efficiency of GMDTC in removing Cd from the kidney. Altogether, our results show that GMDTC is safe and highly efficient in removing Cd from the cells, and this effect is mediated by renal glucose transporters.


Assuntos
Cádmio , Proteínas Facilitadoras de Transporte de Glucose , Animais , Humanos , Cádmio/toxicidade , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Rim/metabolismo , Quelantes/farmacologia , Quelantes/uso terapêutico , Quelantes/metabolismo , Glucose/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA